Vestas 公司同樣將滑差控制技術(shù)應(yīng)用于它的 OptiSlip 系統(tǒng),而轉(zhuǎn)子上的電子電路與定子上的控制器之間則采用光學(xué)耦合。在本例中,控制值約為10%,工作時(shí)間約為10ms,從而在湍流條件下實(shí)現(xiàn)平穩(wěn)的功率輸出,并降低結(jié)構(gòu)負(fù)載。滑差值也會(huì)影響發(fā)電效率,兆瓦級(jí)發(fā)電機(jī)的滑差值一般工作在1% 范圍內(nèi),效率約為95%。因?yàn)檗D(zhuǎn)子電路要消耗無(wú)功功率,所以功率因數(shù)一般都較低,約為0.87。由于這一原因,開(kāi)關(guān)電容器組是傳統(tǒng)系統(tǒng)不可分割的一部分,但功率電路會(huì)越來(lái)越多地控制功率因數(shù)。就 Nordic公司的 1000 型渦輪發(fā)電機(jī)而言,開(kāi)關(guān)電容能在渦輪發(fā)電機(jī)的整個(gè)工作范圍內(nèi)將輸出功率因數(shù)保持在 1。
只要把阻尼因素引入偏轉(zhuǎn)系統(tǒng)的控制環(huán)路,就可能使輪葉繞塔軸進(jìn)行一定程度的搖擺運(yùn)動(dòng),從而吸收湍流。因此,1000渦輪發(fā)電機(jī)的結(jié)構(gòu)可以承受 55m/s 的風(fēng)速,并能在 4m/s的風(fēng)速下開(kāi)始工作,而在 25m/s 風(fēng)速下停止工作。在轉(zhuǎn)子速度為 25 rpm,轉(zhuǎn)子輪葉葉尖速度為 71m/s時(shí),該發(fā)電機(jī)能在17m/s 風(fēng)速下輸出1MW 最大功率。當(dāng)轉(zhuǎn)子剛開(kāi)始超速時(shí),離心力驅(qū)動(dòng)液壓釋放閥門,使輪葉葉尖轉(zhuǎn)至剎車位置。專業(yè)生產(chǎn)風(fēng)力發(fā)電系統(tǒng)的 Mita-Teknik 公司,它所生產(chǎn)的 SCADA(管理控制與數(shù)據(jù)采集)系統(tǒng)也能驅(qū)動(dòng)氣動(dòng)剎車和機(jī)械剎車。發(fā)電機(jī)通過(guò)撓性電纜向塔座輸出690V三相 交流電。SCADA 系統(tǒng)可以卷回電纜以防止纏繞。SCADA 系統(tǒng)與中心設(shè)備之間的通信是通過(guò)調(diào)制解調(diào)器和電話線,還有一個(gè) PC 用來(lái)獨(dú)立監(jiān)控與記錄渦輪發(fā)電機(jī)的運(yùn)行情況。
控制系統(tǒng)簡(jiǎn)化了功率獲取
許多風(fēng)力渦輪發(fā)電機(jī)的設(shè)計(jì)師都喜歡采用轉(zhuǎn)子傾斜角控制技術(shù),因?yàn)檫@一技術(shù)可以大大緩解速度變化問(wèn)題和系統(tǒng)功率獲取問(wèn)題。當(dāng)代產(chǎn)品有兩種不同的傾斜角控制方法,第一種方法是逐漸將輪葉對(duì)空氣氣流的攻角從滿功率的最大位置減小到獲取最小功率的周期變距位置 ;第二種方法是將攻角增大到發(fā)生氣動(dòng)失速點(diǎn)。丹麥工程師 MB Pedersen 和 P Nielsen 于 1980 年在實(shí)驗(yàn)型 Nibe-A 和 Nibe-B 渦輪發(fā)電機(jī)中試驗(yàn)了這兩種方法(參考文獻(xiàn) 1)。他們的試驗(yàn)結(jié)果顯示:全輪葉傾斜角控制可使輸出特性更為平滑,并有可能在高風(fēng)速時(shí)減小轉(zhuǎn)力推力(圖 3)。如今,更先進(jìn)的輪葉氣動(dòng)算法和控制算法,有助于減小兩者之間的差別。